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Basic Notations of Toric Ideals

Let A = {a1, . . . , am} ⊆ Nn be a vector configuration and
NA := {l1a1 + · · ·+ lmam | li ∈ N} the corresponding affine
semigroup. We grade the polynomial ring K[x1, . . . , xm] over an
arbitrary field K by the semigroup NA setting degA(xi) = ai for
i = 1, . . . ,m. For u = (u1, . . . , um) ∈ Nm, we define the A-degree
of the monomial xu := x

u1

1 · · · xum

m to be

u1a1 + · · ·+ umam ∈ NA.

We denoted by degA(x
u), while the usual degree u1 + · · ·+ um of

xu we denoted by deg(xu).

Definition

The toric ideal IA associated to A is the binomial ideal

IA =< xu − xv : degA(x
u) = degA(x

v) > .
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A nonzero binomial xu − xv in IA is called primitive if there
exists no other binomial xw − xz in IA such that

xw|xu and xz|xv.

Definition

The set of the primitive binomials forms the Graver basis of IA

and is denoted by GrA.

The support of a monomial xu of K[x1, . . . , xm] is
supp(xu) := {i | xi divides xu} and the support of a binomial
B = xu − xv is supp(B) := supp(xu) ∪ supp(xv).
An irreducible binomial B belonging to IA is called a circuit
of IA if there is no binomial B′ ∈ IA such that
supp(B′) $ supp(B).
The set of the circuits is denoted by CA and it is a subset of
the Graver basis.
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Elements of Graph Theory

Let G be a finite simple connected graph on the vertex set
V(G) = {v1, . . . , vn} and E(G) = {e1, . . . , eq} be the set of edges
of G.
A walk of length s connecting v1 ∈ V(G) and vs+1 ∈ V(G) is a
finite sequence of the form

w = ({v1, v2}, {v2, v3}, . . . , {vs, vs+1})

with each {vj , vj+1} ∈ E(G). An even (respectively odd) walk is a
walk of even (respectively odd) length. A walk
w = (e1 = {v1, v2}, e2 = {v2, v3}, . . . , eq = {vs, vs+1}) is called
closed if vs+1 = v1. A cycle is a closed walk

({v1, v2}, {v2, v3}, . . . , {vq, v1})

with vk 6= vj , for every 1 ≤ k < j ≤ q.
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Elements of Graph Theory

We denote by w the subgraph of G with vertices the
vertices of the walk and edges the edges of the walk w.
A cut edge (respectively cut vertex) is an edge (respectively
vertex) of the graph whose removal increases the number
of connected components of the remaining subgraph.
A graph is called biconnected if it is connected and does
not contain a cut vertex. A block is a maximal biconnected
subgraph of a given graph G.
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Definition of IG

Let G be a finite simple connected graph with vertices
V(G) = {v1, . . . , vn} and edges E(G) = {e1, . . . , em}.

Let K[e1, . . . , em] be the polynomial ring in the m variables
e1, . . . , em over a field K.
We will associate each edge e = {vi , vj} ∈ E(G) with the
element ae = vi + vj in the free abelian group Zn with basis
the set of vertices of G.

Definition

We denote by IG the toric ideal IAG
in K[e1, . . . , em], where

AG = {ae | e ∈ E(G)} ⊂ Zn.
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Definition of IG

Given an even closed walk w = (e1, . . . , e2q−1, e2q) of the graph
G we denote by

E
+(w) =

q∏
k=1

e2k−1, E
−(w) =

q∏
k=1

e2k

and by Bw the binomial

Bw = E
+(w)− E

−(w) ∈ IG.

Theorem (Villarreal, 1995)

The toric ideal IG is generated by binomials of this form

IG =< Bw , w is an even closed walk of G > .
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Example

w1 = (e1, e2, e7, e8) we have that E+(w1) = e1e7 and
E−(w1) = e2e8 therefore Bw1

= e1e7 − e2e8.

w2 = (e3, e4, e5, e6) =⇒ Bw2
= e3e5 − e4e6

w3 = (e1, e2, . . . , e8) =⇒ Bw3
= e1e3e5e7 − e2e4e6e8.

Therefore
Bw1

, Bw2
, Bw3

∈ IG.
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The set of the circuits of IG

The following theorem determine the form of the circuits of a
toric ideal of a graph G.

Theorem (Villareal, 1995)

Let G be a graph and let W be a connected subgraph of G. The
subgraph W is the graph w of a walk w such that Bw is a circuit
if and only if

1 W is an even cycle or
2 W consists of two odd cycles intersecting in exactly one

vertex or
3 W consists of two vertex-disjoint odd cycles joined by a

path.

Christos Tatakis On the degree bounds of the Graver basis
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The Graver basis of IG

A walk w is primitive if and only if the corresponding binomial
Bw is primitive.

Example

In the previous example, the binomial Bw3
= e1e3e5e7 − e2e4e6e8

is not primitive. There exists the even closed subwalk
w1 = (e1, e2, e7, e8) of w3, where its corresponding binomial is
Bw1

= e1e7 − e2e8. We remark that E+(w1)|E+(w3) and
E−(w1)|E−(w3).
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The Graver basis of IG

The next Theorem describes the form of the underlying graph of
a primitive walk.

Theorem (Reyes, - ,Thoma, 2012)

Let G be a graph and let W be a connected subgraph of G. The
subgraph W is the graph w of a primitive walk w if and only if

1 W is an even cycle or
2 W is not biconnected and

1 every block of W is a cycle or a cut edge and
2 every cut vertex of W belongs to exactly two blocks and

separates the graph in two parts, the total number of edges
of the cyclic blocks in each part is odd.
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One of the fundamental problems in toric algebra is to give good
upper bounds on the degrees of the elements of the Graver
basis.

It was conjectured that the degree of any element in the Graver
basis GrA of a toric ideal IA is bounded above by the maximal
true degree of any circuit in CA.

True Circuit conjecture (Sturmfels, 1995)

Let us call tA the maximal true degree of any circuit in CA. Then

deg(B) ≤ tA,

for every B ∈ GrA.
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Definition (Sturmfels)

Let C ∈ CA be a circuit and regard its support supp(C) as a
subset of A. The index of the circuit C is denoted by index(C)
and is defined as:

index(c) = [R(supp(c)) ∩ZA : Z(supp(c))].

The true degree of a circuit C is defined:

true deg(C) = deg(C) · index(C)

Christos Tatakis On the degree bounds of the Graver basis
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The Problem

Recall:

True Circuit conjecture

Let us call tA the maximal true degree of any circuit in CA. Then

deg(B) ≤ tA,

for every B ∈ GrA.

There are several examples of families of toric ideals where the
true circuit conjecture is true. It is also true for some families
of toric ideals of graphs.

However the true circuit conjecture is not true in the general
case [ - ,Thoma, 2011].
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The Problem

To answer the conjecture we gave an infinite family of
counterexamples by providing toric ideals of graphs such that:

tA < deg(B) ≤ (tA)
2, ∀B ∈ GrA.

Problem

Does the degree of any element in the Graver basis GrA of a
toric ideal IA is bounded above by a constant times (tA)

2 or a
constant times (tA)

2013?
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The graph G
n
r

The degrees of elements of GrA, CA of the IGn
r

Theorem

Let G be a graph and let C be a circuit in CAG
. Then

true deg(C) = deg(C).

Therefore to compare the maximum degrees of primitive
elements of the IG with tA, its enough to compare the deg(B)
with deg(C), for every B ∈ GrA and for every C ∈ CA.
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The graph G
n
r

The degrees of elements of GrA, CA of the IGn
r

Let n ≥ 3 be an odd integer. Let Gn
0 be a cycle of length n. For

r ≥ 0 we define the graph Gn
r inductively on r. Gn

r is the graph
taken from Gn

r−1 by adding to each vertex of degree two of the
graph Gn

r−1 a cycle of length n.

Example

We see in this figure the graphs A = G3
0, B = G3

1 and C = G3
2.

We note that the graph Gn
r is Eulerian since by construction it

is connected and every vertex has even degree.
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The graph G
n
r

The degrees of elements of GrA, CA of the IGn
r

Proposition

Let wn
r be any even closed Eulerian walk of the graph Gn

r . The
binomial Bwn

r
is an element of the Graver basis of IGn

r
and

deg(Bwn
r
) =

1

2
(n + n

2(
(n− 1)r − 1

n− 2
)).

Proposition

Let tAGn
r

the maximum degree of a circuit in the graph Gn
r . Then

tAGn
r
= n + (2r − 1)(n− 1).
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The graph G
n
r

The degrees of elements of GrA, CA of the IGn
r

Theorem

The degrees of the elements in the Graver basis of a toric ideal
IA cannot be bounded polynomially above by the maximal true
degree of a circuit.

Or equivalently:
There is not a polynomial f(x) ∈ R[x], such that

deg(B) ≤ f(tA),∀B ∈ GrA, ,

for a toric ideal IA, where tA is the maximal true degree of the
circuits C ∈ CA.

Christos Tatakis On the degree bounds of the Graver basis



Contents
Introduction

Description of the Problem
On the degree bounds of Graver basis

The graph G
n
r

The degrees of elements of GrA, CA of the IGn
r

Thank you!!!
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